R. Ahlswede and H. Aydinian: “On error control codes for random network coding” Network Coding, Theory, and Applications, 2009. NetCod'09. Workshop on (2009): 68-73.
cdc constraints: Ahlswede_Aydinian
mdc constraints: Ahlswede_Aydinian_ilp
Jingmei Ai, Thomas Honold, and Haiteng Liu: “The Expurgation-Augmentation Method for Constructing Good Plane Subspace Codes” arXiv:1601.01502 (2016): 44.
cdc constraints: expurgation_augmentation_general, expurgation_augmentation_special_cases
Johannes André: “Über nicht-Desarguessche Ebenen mit transitiver Translationsgruppe” Mathematische Zeitschrift 60.1 (1954): 156-186.
cdc constraints: spread
Christine Bachoc, Alberto Passuello, and Frank Vallentin: “Bounds for projective codes from semidefinite programming” Advances of Mathematics in Communications 7 (2013): 127-145
mdc constraints: semidefinite_programming
F. Bardestani and A. Iranmanesh: “Cyclic Orbit Codes with the Normalizer of a Singer Subgroup” Journal of Sciences, Islamic Republic of Iran 26.1 (2015): 49-55.
cdc constraints: Bardestani_Iranmanesh
Albrecht Beutelspacher: “Partial spreads in finite projective spaces and partial designs” Mathematische Zeitschrift 145.3 (1975): 211-229.
cdc constraints: partial_spread_2, spread
R. C. Bose and K. A. Bush: “Orthogonal arrays of strength two and three” The Annals of Mathematical Statistics (1952): 508-524.
cdc constraints: DrakeFreeman
Michael Braun, Tuvi Etzion, Patric Östergård, Alexander Vardy, and Alfred Wassermann: “Existence of q-Analogs of Steiner Systems” Forum of Mathematics, Pi 4 (2016): 14.
cdc codes: \(A_2(13,4;3) \ge 1597245\)
Michael Braun, Patric R. J. Östergård, and Alfred Wassermann: “New Lower Bounds for Binary Constant-Dimension Subspace Codes” Experimental Mathematics (2016): 5.
cdc codes: \(A_2(8,4;3) \ge 1326\), \(A_2(8,4;4) \ge 4801\), \(A_2(9,4;3) \ge 5986\), \(A_2(10,4;3) \ge 23870\), \(A_2(11,4;3) \ge 97526\)
Michael Braun and Jan Reichelt: “q-Analogs of Packing Designs” Journal of Combinatorial Designs 22.7 (2014): 306-321.
cdc codes: \(A_2(7,4;3) \ge 329\), \(A_2(8,4;3) \ge 1312\), \(A_2(11,4;3) \ge 92411\), \(A_2(12,4;3) \ge 385515\), \(A_2(14,4;3) \ge 5996178\)
Antonio Cossidente and Francesco Pavese: “Subspace codes in PG(2n-1,q)” F. Combinatorica (2016): 26
cdc constraints: CossidentePavese14_theorem311, CossidentePavese14_theorem38, CossidentePavese14_theorem43
Antonio Cossidente and Francesco Pavese: “Veronese subspace codes” Designs, Codes and Cryptography 81.3 (2016): 1445–457.
cdc constraints: CossidentePavese_n6_d4_k3
Antonio Cossidente, Francesco Pavese, and Leo Storme: “Optimal subspace codes in PG(4,q)” in preparartion.

mdc constraints: n5_d3_CPS
mdc codes: \(A_2(5,3) \ge 18\)
Terry Czerwinski, and David Oakden: “The translation planes of order twenty-five” Journal of Combinatorial Theory, Series A 59.2 (1992): 193-217.
Peter Dembowski: “Finite Geometries: Reprint of the 1968 edition” Springer Science & Business Media (2012)
cdc constraints: spread
Ulrich Dempwolff: “Translation planes of order 27” Designs, Codes and Cryptography 4.2 (1994): 105-121.
cdc codes: \(A_3(6,6;3) \ge 28\)
Ulrich Dempwolff and A. Reifart: “The classification of the translation planes of order 16, I” Geometriae Dedicata 15.2 (1983): 137-153.
David A. Drake and J. W. Freeman: “Partial t-spreads and group constructible (s,r,μ)-nets” Journal of Geometry 13 (1979): 210-216.
cdc constraints: DrakeFreeman
J. Eisfeld and L. Storme: “Partial t-spreads and minimal t-covers in finite projective spaces” Intensive Course on Finite Geometry and its Applications Ghent University (2000): 29.
S. El-Zanati, H. Jordon, G. Seelinger, P. Sissokho, and L. Spence: “The maximum size of a partial 3-spread in a finite vector space over GF(2)” Designs, Codes and Cryptography 54.2 (2010): 101-107.
cdc constraints: partial_spread_1
cdc codes: \(A_2(8,6;3) \ge 34\)
Tuvi Etzion: “Problems on q-Analogs in Coding Theory.” arXiv:1305.6126 (2013): 37.
mdc codes: \(A_2(6,4) \ge 77\)
Tuvi Etzion and Natalia Silberstein: “Error-Correcting Codes in Projective Spaces via Rank-Metric Codes and Ferrers Diagrams” Information Theory, IEEE Transactions on 55.7 (2009): 2909-2919.
cdc constraints: echelon_ferrers, ef_computation
cdc codes: \(A_2(9,4;4) \ge 36945\), \(A_2(10,4;5) \ge 1167327\), \(A_2(10,6;5) \ge 32841\), \(A_2(12,4;4) \ge 19068061\), \(A_2(13,6;4) \ge 266501\), \(A_3(7,4;3) \ge 6685\), \(A_3(8,4;4) \ge 539578\), \(A_4(7,4;3) \ge 65881\), \(A_4(8,4;4) \ge 16849745\)
mdc constraints: cdc_average_argument, echelon_ferrers, ef_computation
Tuvi Etzion and Natalia Silberstein: “Codes and Designs Related to Lifted MRD Codes” Information Theory, IEEE Transactions on 59.2 (2013): 1004-1017.
cdc constraints: construction_1, construction_2, construction_3, pending_dots
mdc codes: \(A_2(7,3) \ge 584\)
Tuvi Etzion, and Alexander Vardy: “Error-Correcting Codes in Projective Space” Information Theory, IEEE Transactions on 57.2 (2011): 1165-1173.
cdc constraints: anticode, johnson_1, johnson_2, partial_spread_3, partial_spread_5
mdc constraints: Etzion_Vardy_ilp, gilbert_varshamov
mdc codes: \(A_2(5,3) \ge 18\), \(A_2(6,3) \ge 85\)
P. Frankl and R. M. Wilson: “The Erdős-Ko-Rado theorem for vector spaces” Journal of Combinatorial Theory, Series A 43.2 (1986): 228–236.
cdc constraints: anticode
Heide Gluesing-Luerssen and Carolyn Troha: “Construction of subspace codes through linkage” Advances in Mathematics of Communications 10.3 (2016): 525-540.
cdc constraints: linkage_GLT
Neil A. Gordon, Ron Shaw, and Leonard H. Soicher: “Classification of partial spreads in PG (4, 2)” (2004): 63.
cdc codes: \(A_2(5,4;2) \ge 9\)
Elisa Gorla and Alberto Ravagnani: “Subspace Codes from Ferrers Diagrams” J. Algebra Appl. (2017) 16.7
cdc constraints: Gorla_Ravagnani_2014, echelon_ferrers, ef_computation, pending_dots
mdc constraints: echelon_ferrers, ef_computation
Ismael Gutierrez and Ivan Molina: “Some constructions of cyclic and quasi-cyclic subspaces codes” arXiv:1504.04553 (2015) 14.
cdc codes: \(A_2(8,4;4) \ge 2992\), \(A_2(8,4;4) \ge 4590\), \(A_2(10,4;3) \ge 21483\), \(A_2(10,10;5) \ge 33\)
Marshall Hall, Jr., J. Dean Swift and Robert J. Walker: “Uniqueness of the Projective Plane of Order Eight” Mathematical Tables and Other Aids to Computation 10.56 (1992): 186-194.
Daniel Heinlein: “New LMRD bounds for constant dimension codes and improved constructions” arXiv:1801.04803 (2018)
cdc codes: \(A_2(10,6;5) \ge 32923\), \(A_2(11,6;4) \ge 16717\), \(A_2(11,6;5) \ge 263478\), \(A_2(12,6;4) \ge 66839\), \(A_2(12,6;5) \ge 2105077\), \(A_2(13,6;4) \ge 267897\)
Daniel Heinlein, Thomas Honold, Michael Kiermaier, Sascha Kurz, and Alfred Wassermann: “Classifying optimal binary subspace codes of length 8, constant dimension 4 and minimum distance 6” arXiv:1711.06624 (2017)
cdc codes: \(A_2(8,6;4) \ge 257\)
mdc constraints: HKK_theorem_3_3_i_lower_bound, HKK_theorem_3_3_i_upper_bound
mdc codes: \(A_2(8,6) \ge 257\)
Daniel Heinlein, Michael Kiermaier, Sascha Kurz, and Alfred Wassermann: “A subspace code of size 333 in the setting of a binary q-analog of the Fano plane” arXiv:1708.06224 (2017)
cdc codes: \(A_2(7,4;3) \ge 333\)
Daniel Heinlein and Sascha Kurz: “A new upper bound for subspace codes” arXiv:1703.08712 (2017): 9.
cdc constraints: special_case_2_8_6_4
Daniel Heinlein and Sascha Kurz: “Asymptotic bounds for the sizes of constant dimension codes and an improved lower bound” arXiv:1705.03835 (2017): 30.
cdc constraints: Ahlswede_Aydinian
Daniel Heinlein and Sascha Kurz: “Coset Construction for Subspace Codes” Information Theory, IEEE Transactions on 63.12 (2017)
cdc constraints: coset_construction, coset_construction_parallelism_part
cdc codes: \(A_2(9,6;4) \ge 1033\), \(A_2(10,6;4) \ge 4173\)
J. W. P. Hirschfeld: “Projective geometries over finite fields” The Clarendon Press Oxford University Press New York, second edition (1998).

Thomas Honold and Michael Kiermaier: “On putative q-Analogues of the Fano Plane and Related Combinatorial Structures” Dynamical Systems, Number Theory and Applications (2016) 141-175
cdc constraints: construction_HK15
cdc codes: \(A_2(7,4;3) \ge 329\), \(A_3(7,4;3) \ge 6977\)
Thomas Honold, Michael Kiermaier, and Sascha Kurz: “Optimal binary subspace codes of length 6, constant dimension 3 and minimum subspace distance 4” Topics in Finite Fields 632 (2015): 157-176.
cdc constraints: HonoldKiermaierKurz_n6_d4_k3
cdc codes: \(A_2(6,4;3) \ge 77\)
Thomas Honold, Michael Kiermaier, and Sascha Kurz: “Classification of large partial plane spreads in PG(6, 2) and related combinatorial objects” arXiv:1606.07655
cdc codes: \(A_2(7,6;3) \ge 17\)
mdc codes: \(A_2(7,5) \ge 34\)
Thomas Honold, Michael Kiermaier, and Sascha Kurz: “Partial spreads and vector space partitions” arXiv:1611.06328 to appear in Network Coding and Subspace Designs, Eds. M. Greferath, M.O. Pavčević, N. Silberstein, and A. Vazquez-Castro, Springer
cdc constraints: partial_spread_HKK16_T10
cdc codes: \(A_2(8,6;3) \ge 34\)
Thomas Honold, Michael Kiermaier, and Sascha Kurz: “Constructions and Bounds for Mixed-Dimension Subspace Codes” Advances in Mathematics of Communications 10.3 (2016) 649-682.
cdc codes: \(A_2(4,4;2) \ge 5\), \(A_2(6,6;3) \ge 9\), \(A_2(7,6;3) \ge 17\), \(A_2(8,8;4) \ge 17\), \(A_3(4,4;2) \ge 10\), \(A_3(6,6;3) \ge 28\), \(A_4(4,4;2) \ge 17\), \(A_5(4,4;2) \ge 26\), \(A_7(4,4;2) \ge 50\)
mdc constraints: HKK_theorem_3_3_i_lower_bound, HKK_theorem_3_3_i_upper_bound, d2, improved_cdc_lower_bound, improved_cdc_upper_bound, layer_construction, neqdeven, neven_deqnm1, nodd_deqnm1, nodd_deqnm2_e, nodd_deqnm2_l, nodd_deqnm2_u, special_cases_upper_notderived
mdc codes: \(A_2(2,2) \ge 3\), \(A_2(3,2) \ge 8\), \(A_2(4,2) \ge 37\), \(A_2(5,2) \ge 187\), \(A_2(6,2) \ge 1521\), \(A_2(7,2) \ge 14606\), \(A_2(8,2) \ge 222379\), \(A_2(9,2) \ge 4141729\), \(A_2(10,2) \ge 121919127\), \(A_2(11,2) \ge 4466744372\), \(A_2(12,2) \ge 258501941713\), \(A_2(13,2) \ge 18779494904263\), \(A_2(14,2) \ge 2154948394379709\), \(A_2(15,2) \ge 311738238353418074\), \(A_2(16,2) \ge 71234670515346760951\), \(A_2(17,2) \ge 20564497734374127115501\), \(A_2(18,2) \ge 9377928494585763558839523\), \(A_2(19,2) \ge 5408580882753786431279731328\), \(A_3(2,2) \ge 4\), \(A_3(3,2) \ge 14\), \(A_3(4,2) \ge 132\), \(A_3(5,2) \ge 1332\), \(A_3(6,2) \ge 34608\), \(A_3(7,2) \ge 1026328\), \(A_3(8,2) \ge 77705744\), \(A_3(9,2) \ge 6860614544\), \(A_3(10,2) \ge 1543125682496\), \(A_3(11,2) \ge 407650394221536\), \(A_3(12,2) \ge 274173842939879488\), \(A_3(13,2) \ge 217094161964411629888\), \(A_3(14,2) \ge 437555577947523368326912\), \(A_3(15,2) \ge 1039076627439939472446430592\), \(A_3(16,2) \ge 6280522010999565623871130419456\), \(A_3(17,2) \ge 44739207544278383273349960118169856\), \(A_3(18,2) \ge 811157108360138243362895549411912131584\), \(A_3(19,2) \ge 17334224582198669278770650291735912677010944\), \(A_4(2,2) \ge 5\), \(A_4(3,2) \ge 22\), \(A_4(4,2) \ge 359\), \(A_4(5,2) \ge 6139\), \(A_4(6,2) \ge 379535\), \(A_4(7,2) \ge 25704928\), \(A_4(8,2) \ge 6269331761\), \(A_4(9,2) \ge 1693943516101\), \(A_4(10,2) \ge 1646849322856025\), \(A_4(11,2) \ge 1778690155851898282\), \(A_4(12,2) \ge 6910942435714698022139\), \(A_4(13,2) \ge 29851806244777155815534479\), \(A_4(14,2) \ge 463845192731753530965728186915\), \(A_4(15,2) \ge 8013977155310915080016613977522548\), \(A_4(16,2) \ge 498066010787890008155987967168551891141\), \(A_4(17,2) \ge 34420514954543599371235443603262517261964121\), \(A_4(18,2) \ge 8556777750864526187911418804965026926384160536045\), \(A_4(19,2) \ge 2365372578679512182314915604695550782642685560327742782\), \(A_5(2,2) \ge 6\), \(A_5(3,2) \ge 32\), \(A_5(4,2) \ge 808\), \(A_5(5,2) \ge 21088\), \(A_5(6,2) \ge 2566368\), \(A_5(7,2) \ge 333062144\), \(A_5(8,2) \ge 201161057920\), \(A_5(9,2) \ge 130383335603200\), \(A_5(10,2) \ge 393153256760148480\), \(A_5(11,2) \ge 1273824505480738144256\), \(A_5(12,2) \ge 19199483621099329716140032\), \(A_5(13,2) \ge 311019164051283235528140685312\), \(A_5(14,2) \ge 23437491673790886665269226565230592\), \(A_5(15,2) \ge 1898343109664891700541791141575543226368\), \(A_5(16,2) \ge 715259279871732236829984542779763924521222144\), \(A_5(17,2) \ge 289665171234910201562211053424258500847622945767424\), \(A_5(18,2) \ge 545700103157547923454032782855873119865046931321370312704\), \(A_5(19,2) \ge 1104985699940665958989412433957199720026143707690553670348308480\), \(A_7(2,2) \ge 8\), \(A_7(3,2) \ge 58\), \(A_7(4,2) \ge 2852\), \(A_7(5,2) \ge 142852\), \(A_7(6,2) \ge 48216416\), \(A_7(7,2) \ge 16868199016\), \(A_7(8,2) \ge 39741980063504\), \(A_7(9,2) \ge 97292877050623504\), \(A_7(10,2) \ge 1603926790896596642432\), \(A_7(11,2) \ge 27484891360591082207177632\), \(A_7(12,2) \ge 3171542305632803880032619871808\), \(A_7(13,2) \ge 380430351919414427641088029723551808\), \(A_7(14,2) \ge 307288356314229806376292964555107145137664\), \(A_7(15,2) \ge 258017037295312889339178547120512162294536808064\), \(A_7(16,2) \ge 1458870888924854760006394404592890205261685632368271616\), \(A_7(17,2) \ge 8574664161553264151428650758674596275586758673726248708751616\), \(A_7(18,2) \ge 339377901880889399149257884684947716532422547051645404793668374448128\), \(A_7(19,2) \ge 13963100154451053905283995421210739233865967405270492184173660353525630908928\), \(A_8(2,2) \ge 9\), \(A_8(3,2) \ge 74\), \(A_8(4,2) \ge 4747\), \(A_8(5,2) \ge 308947\), \(A_8(6,2) \ge 156162843\), \(A_8(7,2) \ge 81183411548\), \(A_8(8,2) \ge 327659429183389\), \(A_8(9,2) \ge 1362441066883081189\), \(A_8(10,2) \ge 43980428697245703899181\), \(A_8(11,2) \ge 1462964924763536311525587566\), \(A_8(12,2) \ge 377791931723329465422341499645103\), \(A_8(13,2) \ge 100534656304920922914050539639639904503\), \(A_8(14,2) \ge 207693511973813534610553803431729000698754367\), \(A_8(15,2) \ge 442156353998327362270757228269337175350417971210112\), \(A_8(16,2) \ge 7307566690035440019173154780461391215091503147059515595201\), \(A_8(17,2) \ge 124455958577714097108024810199576169356215499446391670599398702601\), \(A_8(18,2) \ge 16455177560026238105621735732130983984862055222836334866940628579275104849\), \(A_8(19,2) \ge 2241999255265488707954469269918612450261829794217662835681983673768665755238765714\), \(A_9(2,2) \ge 10\), \(A_9(3,2) \ge 92\), \(A_9(4,2) \ge 7464\), \(A_9(5,2) \ge 612624\), \(A_9(6,2) \ge 441959520\), \(A_9(7,2) \ge 326112922048\), \(A_9(8,2) \ge 2114530467299456\), \(A_9(9,2) \ge 14040675863296123136\), \(A_9(10,2) \ge 819240506883749877900800\), \(A_9(11,2) \ge 48957810801345386907074092032\), \(A_9(12,2) \ge 25708733095428691935741540859070464\), \(A_9(13,2) \ge 13827163231734033747834068233653363871744\), \(A_9(14,2) \ge 65348177799201782965568701172796668994207047680\), \(A_9(15,2) \ge 316321223358800850063408234086378980344607376256647168\), \(A_9(16,2) \ge 13454610940042444841139807389178448386407410305391634922110976\), \(A_9(17,2) \ge 586149629489783561417254875882304339104815581674314737015897299419136\), \(A_9(18,2) \ge 224384992517708719472523093298570420971408321696723352971792224732784491888640\), \(A_9(19,2) \ge 87977915141973353972841022973087980756687157787143031068804885978790883149243634941952\), \(A_2(4,3) \ge 5\), \(A_2(4,4) \ge 5\), \(A_2(5,3) \ge 18\), \(A_2(5,4) \ge 9\), \(A_2(6,3) \ge 104\), \(A_2(6,4) \ge 77\), \(A_2(6,5) \ge 9\), \(A_2(6,6) \ge 9\), \(A_2(7,3) \ge 593\), \(A_2(7,5) \ge 34\), \(A_2(7,6) \ge 17\), \(A_2(8,8) \ge 17\), \(A_2(8,6) \ge 257\), \(A_3(4,4) \ge 10\), \(A_3(6,6) \ge 28\), \(A_4(4,4) \ge 17\), \(A_5(4,4) \ge 26\), \(A_7(4,4) \ge 50\), \(A_2(3,3) \ge 2\), \(A_2(5,5) \ge 2\), \(A_2(7,7) \ge 2\), \(A_2(9,9) \ge 2\), \(A_2(11,11) \ge 2\), \(A_2(13,13) \ge 2\), \(A_2(15,15) \ge 2\), \(A_2(17,17) \ge 2\), \(A_2(19,19) \ge 2\), \(A_3(3,3) \ge 2\), \(A_3(5,5) \ge 2\), \(A_3(7,7) \ge 2\), \(A_3(9,9) \ge 2\), \(A_3(11,11) \ge 2\), \(A_3(13,13) \ge 2\), \(A_3(15,15) \ge 2\), \(A_3(17,17) \ge 2\), \(A_3(19,19) \ge 2\), \(A_4(3,3) \ge 2\), \(A_4(5,5) \ge 2\), \(A_4(7,7) \ge 2\), \(A_4(9,9) \ge 2\), \(A_4(11,11) \ge 2\), \(A_4(13,13) \ge 2\), \(A_4(15,15) \ge 2\), \(A_4(17,17) \ge 2\), \(A_4(19,19) \ge 2\), \(A_5(3,3) \ge 2\), \(A_5(5,5) \ge 2\), \(A_5(7,7) \ge 2\), \(A_5(9,9) \ge 2\), \(A_5(11,11) \ge 2\), \(A_5(13,13) \ge 2\), \(A_5(15,15) \ge 2\), \(A_5(17,17) \ge 2\), \(A_5(19,19) \ge 2\), \(A_7(3,3) \ge 2\), \(A_7(5,5) \ge 2\), \(A_7(7,7) \ge 2\), \(A_7(9,9) \ge 2\), \(A_7(11,11) \ge 2\), \(A_7(13,13) \ge 2\), \(A_7(15,15) \ge 2\), \(A_7(17,17) \ge 2\), \(A_7(19,19) \ge 2\), \(A_8(3,3) \ge 2\), \(A_8(5,5) \ge 2\), \(A_8(7,7) \ge 2\), \(A_8(9,9) \ge 2\), \(A_8(11,11) \ge 2\), \(A_8(13,13) \ge 2\), \(A_8(15,15) \ge 2\), \(A_8(17,17) \ge 2\), \(A_8(19,19) \ge 2\), \(A_9(3,3) \ge 2\), \(A_9(5,5) \ge 2\), \(A_9(7,7) \ge 2\), \(A_9(9,9) \ge 2\), \(A_9(11,11) \ge 2\), \(A_9(13,13) \ge 2\), \(A_9(15,15) \ge 2\), \(A_9(17,17) \ge 2\), \(A_9(19,19) \ge 2\)
Ferdinand Ihringer, Peter Sin, and Qing Xiang: “New Bounds for Partial Spreads of \(H(2d − 1, q^2)\) and Partial Ovoids of the Ree-Tits Octagon” arXiv:1604.06172 (2017)
cdc constraints: prank
Azadeh Khaleghi, Danilo Silva, and Frank R. Kschischang: “Subspace Codes” IMA Int. Conf. (2009)
mdc constraints: Ahlswede_Aydinian_ilp
Michael Kiermaier and Sascha Kurz: “An improvement of the Johnson bound for subspace codes” arXiv:1707.00650
cdc constraints: improved_johnson
Ralf Koetter and Frank R. Kschischang: “Coding for Errors and Erasures in Random Network Coding” Information Theory, IEEE Transactions on 54.8 (2008): 3579-3591.
cdc constraints: lin_poly, singleton, sphere_covering, sphere_packing
Axel Kohnert and Sascha Kurz: “Construction of large constant dimension codes with a prescribed minimum distance” Lecture Notes Computer Science 5393 (2008): 31-42
cdc codes: \(A_2(6,4;3) \ge 77\), \(A_2(6,4;3) \ge 63\), \(A_2(7,4;3) \ge 304\), \(A_2(7,4;3) \ge 254\), \(A_2(8,4;3) \ge 1275\), \(A_2(9,4;3) \ge 5621\), \(A_2(10,4;3) \ge 21483\), \(A_2(11,4;3) \ge 79833\), \(A_2(12,4;3) \ge 315315\), \(A_2(13,4;3) \ge 1154931\), \(A_2(14,4;3) \ge 4177665\)
mdc codes: \(A_2(6,4) \ge 77\)
Sascha Kurz: “Upper bounds for partial spreads from divisible codes” The 13th International Conference on Finite Fields and their Applications (2017)
cdc constraints: special_case_2_13_10_5
Sascha Kurz: “Improved upper bounds for partial spreads” Designs, Codes and Cryptography (2017) 85(1):97–106
cdc constraints: multicomponent, partial_spread_kurz_q2, partial_spread_kurz_q3
Sascha Kurz: “Packing vector spaces into vector spaces” The Australasian Journal of Combinatorics 68.1 (2017): 122-130
cdc constraints: partial_spread_kurz16_28, partial_spread_kurz16_additional
Zlatka T. Mateva and Svetlana T. Topalova: “Line spreads of PG(5, 2)” J. Combin. Designs 17 (2009): 90-102
cdc codes: \(A_2(6,4;2) \ge 21\)
Rudolf Mathon and Gordon F. Royle: “The translation planes of order 49” Designs, Codes and Cryptography 5.1 (1995): 57-72.
Esmeralda Năstase and Papa Sissokho: “The maximum size of a partial spread in a finite projective space” arXiv:1605.04824 (2016): 9.
cdc constraints: partial_spread_NS, partial_spread_NS_upper_bound
Esmeralda Năstase and Papa Sissokho: “The maximum size of a partial spread II: Upper Bounds” Discrete Mathematics 340.7 (2017): 1481-1487.
cdc constraints: partial_spread_NS_2_Theorem6, partial_spread_NS_2_Theorem7
Cyriel Van Nuffelen and Kristel Van Rompay: “Upper bounds on the independence and the clique covering number” 4OR 1.1 (2003) 43-50.
cdc constraints: prank
Beniamino Segre: “Teoria di Galois, fibrazioni proiettive e geometrie non desarguesiane.” Annali di Matematica Pura ed Applicata 64.1 (1964): 1-76
cdc constraints: spread
Alexander Shishkin: “A combined method of constructing multicomponent network codes” MIPT Proceedings 6.2 (2014) 188-194 (in Russian).
cdc constraints: greedy_multicomponent
Alexander Shishkin, Ernst Gabidulin and Nina Pilipchuk: “On cardinality of network subspace codes” Proceeding of the Fourteenth Int. Workshop on Algebraic and Combinatorial Coding Theory (ACCT-XIV) (2014) 7.
cdc constraints: greedy_multicomponent
Natalia Silberstein and Tuvi Etzion: “Large constant dimension codes and lexicodes” Advances in Mathematics of Communications 5.2 (2011) 177-189.
cdc codes: \(A_2(8,4;4) \ge 4589\), \(A_2(9,4;4) \ge 34944\), \(A_2(10,6;5) \ge 32890\), \(A_3(7,4;3) \ge 6691\)
Natalia Silberstein and Anna-Lena Trautmann: “Subspace Codes Based on Graph Matchings, Ferrers Diagrams, and Pending Blocks” Information Theory, IEEE Transactions on 61.7 (2015): 3937-3953.
cdc constraints: construction_D, construction_ST_A_1, construction_ST_B, linkage_ST
Anna-Lena Trautmann: “A lower bound for constant dimension codes from multi-component lifted MRD codes” arXiv:1301.1918 (2013): 4.
cdc constraints: multicomponent
H. Wang, C. Xing, and R. Safavi-Naini: “Linear authentication codes: bounds and constructions” IEEE Transactions on Information Theory 49.4 (2003): 866–872.
cdc constraints: anticode
Shu-Tao Xia: “A Graham-Sloane Type Construction of Constant Dimension Codes” Network Coding, Theory and Applications, 2008. NetCod 2008. Fourth Workshop on (2008): 5.
cdc constraints: graham_sloane
Shu-Tao Xia and Fang-Wei Fu: “Johnson type bounds on constant dimension codes” Designs, Codes and Cryptography 50.2 (2009): 163–172.
cdc constraints: XiaFuJohnson1
Zong-Ying Zhang, Yong Jiang, and Shu-Tao Xia: “On the Linear Programming Bounds for Constant Dimension Codes” Network Coding (NetCod), 2011 International Symposium on (2011)
cdc constraints: linear_programming_bound