Johannes André: “Über nicht-Desarguessche Ebenen mit transitiver Translationsgruppe” Mathematische Zeitschrift 60.1 (1954): 156-186. https://doi.org/10.1007/BF01187370 cdc constraints: spread
AntrobusGluesingLuerssen2018
Jared Antrobus and Heide Gluesing-Luerssen: “Maximal Ferrers Diagram Codes: Constructions and Genericity Considerations” IEEE Transactions on Information Theory 65.10 (2019): 6204-6223. http://dx.doi.org/10.1109/TIT.2019.2926256
BachocPassuelloVallentin2013
Christine Bachoc, Alberto Passuello, and Frank Vallentin: “Bounds for projective codes from semidefinite programming” Advances of Mathematics in Communications 7.2 (2013): 127-145. http://dx.doi.org/10.3934/amc.2013.7.127 mdc constraints: semidefinite_programming
R. C. Bose and K. A. Bush: “Orthogonal arrays of strength two and three” The Annals of Mathematical Statistics (1952): 508-524. http://www.jstor.org/stable/2236577 cdc constraints: DrakeFreeman
BosmaCannonPlayoust1997
Wieb Bosma, John Cannon, and Catherine Playoust: “The Magma Algebra System I: The User Language” Journal of Symbolic Computation 24.3-4(1997): 235-265. https://doi.org/10.1006/jsco.1996.0125
Michael Braun, Michael Kiermaier, and Anamari Nakić: “On the automorphism group of a binary q-analog of the Fano plane” European Journal of Combinatorics 51 (2016): 443-457. https://doi.org/10.1016/j.ejc.2015.07.014
Joan-Josep Climent, Verónica Requena, and Xaro Soler-Escrivà: “A Construction of Orbit Codes” International Castle Meeting on Coding Theory and Applications, ICMCTA 2017: Coding Theory and Applications (2017): 72-83. https://doi.org/10.1007/978-3-319-66278-7_7 cdc constraints: Orbit_Code_Abeliean_Non_Cyclic
Antonio Cossidente, Francesco Pavese, and Leo Storme: “Optimal subspace codes in PG(4,q)” Advances in Mathematics of Communications 13.3 (2019); 393- 404. https://arxiv.org/abs/1802.09793 mdc constraints: n5_d3_CPS mdc codes: \(A_2(5,3) \ge 18\)
Philippe Delsart: “An algebraic approach to the association schemes of coding theory” Philips Res. Rep. Suppl. 10 (1973) cdc constraints: linear_programming_bound
David A. Drake and J. W. Freeman: “Partial t-spreads and group constructible (s,r,μ)-nets” Journal of Geometry 13.2 (1979): 210-216. https://doi.org/10.1007/BF01919756 cdc constraints: DrakeFreeman
Tuvi Etzion: “A New Approach for Examining q-Steiner Systems” The Electronic Journal of Combinatorics 25.2 (2018): P2.8. https://arxiv.org/abs/1507.08503
Tuvi Etzion, and Alexander Vardy: “On q-analogs of Steiner systems and covering designs” Advances in Mathematics of Communications 5.2 (2011): 161-176. https://doi.org/10.3934/amc.2011.5.161
FranklWilson1986
P. Frankl and R. M. Wilson: “The Erdős-Ko-Rado theorem for vector spaces” Journal of Combinatorial Theory, Series A 43.2 (1986): 228–236. https://doi.org/10.1016/0097-3165(86)90063-4 cdc constraints: anticode
GAP
The GAP Group, “GAP -- Groups, Algorithms, and Programming,” Version 4.8.10 (2018) https://www.gap-system.org
Heide Gluesing-Luerssen and Carolyn Troha: “Construction of subspace codes through linkage” Advances in Mathematics of Communications 10.3 (2016): 525-540. https://doi.org/10.3934/amc.2016023 cdc constraints: linkage_GLT
Marshall Hall, Jr., J. Dean Swift and Robert J. Walker: “Uniqueness of the Projective Plane of Order Eight” Mathematical Tables and Other Aids to Computation 10.56 (1992): 186-194. http://doi.org/10.2307/2001913 cdc codes: \(A_2(6,6;3) \ge 9\) mdc codes: \(A_2(6,6) \ge 9\)
Daniel Heinlein, Michael Kiermaier, Sascha Kurz, and Alfred Wassermann: “A subspace code of size 333 in the setting of a binary q-analog of the Fano plane” Advances in Mathematics of Communications 13.3 (2019): 457-475. https://arxiv.org/abs/1708.06224 cdc codes: \(A_2(7,4;3) \ge 333\)
Daniel Heinlein and Sascha Kurz: “Asymptotic bounds for the sizes of constant dimension codes and an improved lower bound” Coding Theory and Applications. ICMCTA 2017. Lecture Notes in Computer Science. vol 10495. (2017): 163-191. https://doi.org/10.1007/978-3-319-66278-7_15 cdc constraints: Ahlswede_Aydinian
Thomas Honold, Michael Kiermaier, and Sascha Kurz: “Classification of large partial plane spreads in PG(6, 2) and related combinatorial objects” Journal of Geometry 110 (2018): paper number 5. https://arxiv.org/abs/1606.07655 cdc codes: \(A_2(7,6;3) \ge 17\) mdc codes: \(A_2(7,5) \ge 34\)
HonoldKiermaierKurz20162
Thomas Honold, Michael Kiermaier, and Sascha Kurz: “Partial spreads and vector space partitions” arXiv:1611.06328 (2018) pages 131-170 in Network Coding and Subspace Designs, Eds. M. Greferath, M.O. Pavčević, N. Silberstein, and A. Vazquez-Castro, Springer https://arxiv.org/abs/1611.06328 cdc constraints: partial_spread_HKK16_T10 cdc codes: \(A_2(8,6;3) \ge 34\)
Anna-Lena Horlemann-Trautmann, Felice Manganiello, Michael Braun, and Joachim Rosenthal: “Correction to cyclic orbit codes” IEEE Transactions on Information Theory 63.11 (2017): 7616-7616. https://doi.org/10.1109/TIT.2017.2717855
HorlemannTrautmannRosenthal2018
Anna-Lena Horlemann-Trautmann and Joachim Rosenthal: “Constructions of constant dimension codes” In Network Coding and Subspace Designs Springer (2018): 25-42. https://doi.org/10.1007/978-3-319-70293-3_2
IhringerSinXiang2017
Ferdinand Ihringer, Peter Sin, and Qing Xiang: “New Bounds for Partial Spreads of \(H(2d - 1, q^2)\) and Partial Ovoids of the Ree-Tits Octagon” arXiv:1604.06172 (2017) https://arxiv.org/abs/1604.06172 cdc constraints: prank
Michael Kiermaier, Sascha Kurz, and Alfred Wassermann: “The order of the automorphism group of a binary q-analog of the Fano plane is at most two” Designs, Codes and Cryptography 86.2 (2018): 239-250. https://doi.org/10.1007/s10623-017-0360-6
Shuo-Yen Robert Li, Raymond W. Yeung, and Ning Cai: “Linear network coding” IEEE Transactions on Information Theory 49.2 (2003): 371-381. https://doi.org/10.1109/TIT.2002.807285
LiuChangFeng2018
Shuangqing Liu, Yanxun Chang, and Tao Feng: “Constructions for optimal Ferrers diagram rank-metric codes” IEEE Transactions on Information Theory 65.7 (2019): 4115-4130. https://doi.org/10.1109/TIT.2019.2894401
Yongfeng Niu, Qin Yue, and Yansheng Wu: “Several kinds of large cyclic subspace codes via Sidon spaces” Discrete Mathematics 343.5 (2020). https://doi.org/10.1016/j.disc.2019.111788
NuffelenRompay2003
Cyriel Van Nuffelen and Kristel Van Rompay: “Upper bounds on the independence and the clique covering number” 4OR 1.1 (2003) 43-50. https://doi.org/10.1007/s10288-002-0002-2 cdc constraints: prank
Segre1964
Beniamino Segre: “Teoria di Galois, fibrazioni proiettive e geometrie non desarguesiane.” Annali di Matematica Pura ed Applicata 64.1 (1964): 1-76 https://doi.org/10.1007/BF02410047 cdc constraints: spread
Alexander Shishkin, Ernst Gabidulin and Nina Pilipchuk: “On cardinality of network subspace codes” Proceeding of the Fourteenth Int. Workshop on Algebraic and Combinatorial Coding Theory (ACCT-XIV) (2014) 7. http://www.moi.math.bas.bg/acct2014/a50.pdf cdc constraints: greedy_multicomponent
H. Wang, C. Xing, and R. Safavi-Naini: “Linear authentication codes: bounds and constructions” IEEE Transactions on Information Theory 49.4 (2003): 866–872. https://doi.org/10.1109/TIT.2003.809567 cdc constraints: anticode
Xia2008
Shu-Tao Xia: “A Graham-Sloane Type Construction of Constant Dimension Codes” Network Coding, Theory and Applications, 2008. NetCod 2008. Fourth Workshop on (2008): 5. https://doi.org/10.1109/NETCOD.2008.4476190 cdc constraints: graham_sloane